Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 5 of 5 results
1.

Optogenetic decoding of Akt2-regulated metabolic signaling pathways in skeletal muscle cells using transomics analysis.

blue CRY2/CIB1 C2C12 Signaling cascade control
Sci Signal, 21 Feb 2023 DOI: 10.1126/scisignal.abn0782 Link to full text
Abstract: Insulin regulates various cellular metabolic processes by activating specific isoforms of the Akt family of kinases. Here, we elucidated metabolic pathways that are regulated in an Akt2-dependent manner. We constructed a transomics network by quantifying phosphorylated Akt substrates, metabolites, and transcripts in C2C12 skeletal muscle cells with acute, optogenetically induced activation of Akt2. We found that Akt2-specific activation predominantly affected Akt substrate phosphorylation and metabolite regulation rather than transcript regulation. The transomics network revealed that Akt2 regulated the lower glycolysis pathway and nucleotide metabolism and cooperated with Akt2-independent signaling to promote the rate-limiting steps in these processes, such as the first step of glycolysis, glucose uptake, and the activation of the pyrimidine metabolic enzyme CAD. Together, our findings reveal the mechanism of Akt2-dependent metabolic pathway regulation, paving the way for Akt2-targeting therapeutics in diabetes and metabolic disorders.
2.

NF-κB signaling dynamics is controlled by a dose-sensing autoregulatory loop.

blue CRY2olig NIH/3T3 Signaling cascade control
Sci Signal, 30 Apr 2019 DOI: 10.1126/scisignal.aau3568 Link to full text
Abstract: Over the last decade, multiple studies have shown that signaling proteins activated in different temporal patterns, such as oscillatory, transient, and sustained, can result in distinct gene expression patterns or cell fates. However, the molecular events that ensure appropriate stimulus- and dose-dependent dynamics are not often understood and are difficult to investigate. Here, we used single-cell analysis to dissect the mechanisms underlying the stimulus- and dose-encoding patterns in the innate immune signaling network. We found that Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) signaling dynamics relied on a dose-dependent, autoinhibitory loop that rendered cells refractory to further stimulation. Using inducible gene expression and optogenetics to perturb the network at different levels, we identified IL-1R-associated kinase 1 (IRAK1) as the dose-sensing node responsible for limiting signal flow during the innate immune response. Although the kinase activity of IRAK1 was not required for signal propagation, it played a critical role in inhibiting the nucleocytoplasmic oscillations of the transcription factor NF-κB. Thus, protein activities that may be "dispensable" from a topological perspective can nevertheless be essential in shaping the dynamic response to the external environment.
3.

Toward total synthesis of cell function: Reconstituting cell dynamics with synthetic biology.

blue red Cryptochromes LOV domains Phytochromes Review
Sci Signal, 9 Feb 2016 DOI: 10.1126/scisignal.aac4779 Link to full text
Abstract: Biological phenomena, such as cellular differentiation and phagocytosis, are fundamental processes that enable cells to fulfill important physiological roles in multicellular organisms. In the field of synthetic biology, the study of these behaviors relies on the use of a broad range of molecular tools that enable the real-time manipulation and measurement of key components in the underlying signaling pathways. This Review will focus on a subset of synthetic biology tools known as bottom-up techniques, which use technologies such as optogenetics and chemically induced dimerization to reconstitute cellular behavior in cells. These techniques have been crucial not only in revealing causal relationships within signaling networks but also in identifying the minimal signaling components that are necessary for a given cellular function. We discuss studies that used these systems in a broad range of cellular and molecular phenomena, including the time-dependent modulation of protein activity in cellular proliferation and differentiation, the reconstitution of phagocytosis, the reconstitution of chemotaxis, and the regulation of actin reorganization. Finally, we discuss the potential contribution of synthetic biology to medicine.
4.

The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling.

blue bPAC (BlaC) CHO-K1 rat hippocampal neurons Xenopus oocytes Immediate control of second messengers
Sci Signal, 11 Aug 2015 DOI: 10.1126/scisignal.aab0611 Link to full text
Abstract: Blastocladiomycota fungi form motile zoospores that are guided by sensory photoreceptors to areas of optimal light conditions. We showed that the microbial rhodopsin of Blastocladiella emersonii is a rhodopsin-guanylyl cyclase (RhGC), a member of a previously uncharacterized rhodopsin class of light-activated enzymes that generate the second messenger cyclic guanosine monophosphate (cGMP). Upon application of a short light flash, recombinant RhGC converted within 8 ms into a signaling state with blue-shifted absorption from which the dark state recovered within 100 ms. When expressed in Xenopus oocytes, Chinese hamster ovary cells, or mammalian neurons, RhGC generated cGMP in response to green light in a light dose-dependent manner on a subsecond time scale. Thus, we propose RhGC as a versatile tool for the optogenetic analysis of cGMP-dependent signaling processes in cell biology and the neurosciences.
5.

Structure of a light-activated LOV protein dimer that regulates transcription.

blue LOV domains Background
Sci Signal, 2 Aug 2011 DOI: 10.1126/scisignal.2001945 Link to full text
Abstract: Light, oxygen, or voltage (LOV) protein domains are present in many signaling proteins in bacteria, archaea, protists, plants, and fungi. The LOV protein VIVID (VVD) of the filamentous fungus Neurospora crassa enables the organism to adapt to constant or increasing amounts of light and facilitates proper entrainment of circadian rhythms. Here, we determined the crystal structure of the fully light-adapted VVD dimer and reveal the mechanism by which light-driven conformational change alters the oligomeric state of the protein. Light-induced formation of a cysteinyl-flavin adduct generated a new hydrogen bond network that released the amino (N) terminus from the protein core and restructured an acceptor pocket for binding of the N terminus on the opposite subunit of the dimer. Substitution of residues critical for the switch between the monomeric and the dimeric states of the protein had profound effects on light adaptation in Neurospora. The mechanism of dimerization of VVD provides molecular details that explain how members of a large family of photoreceptors convert light responses to alterations in protein-protein interactions.
Submit a new publication to our database